Climate Change

Plastic warms the planet twice as much as aviation – here’s how to make it climate-friendly

We’re all too aware of the consequences of plastics in the oceans and on land. However, beyond the visible pollution of our once pristine habitats, plastics are having a grave impact on the climate too.

Newly published research calculates that across their lifecycle, plastics account for 3.8% of global greenhouse gas emissions. That’s almost double the emissions of the aviation sector. If it were a country, the “Plastic Kingdom” would be the fifth-highest emitter in the world.

Demand is set to rise, too. At 380m tonnes a year, we produce 190 times more plastic than we did in 1950. If the demand for plastic continues to grow at its current rate of 4% a year, emissions from plastic production will reach 15% of global emissions by 2050.

Plastic across the lifecycle

More than 99% of plastics are manufactured from petrochemicals, most commonly from petroleum and natural gas. These raw materials are refined to form ethylene, propylene, butene, and other basic plastic building blocks, before being transported to manufacturers.

The production and transport of these resins requires an awful lot of energy – and therefore fuel. Greenhouse gas emissions also occur during the refining process itself – the “cracking” of larger hydrocarbons from petrochemicals into smaller ones suitable for making plastic releases carbon dioxide and methane. According to the study, about 61% of total plastic greenhouse gas emissions comes from the resin production and transport stage.

A further 30% is emitted at the product manufacturing stage. The vast majority of these emissions come from the energy required to power the plants that turn raw plastic materials into the bottles, bin bags and bicycle helmets we use today. The remainder occurs as a result of chemical and manufacturing processes – for example, the production of plastic foams uses HFCs, particularly potent greenhouse gases.


Ignition of trapped methane pockets in landfills can set off massive fires, releasing the carbon stored in plastic.

The remaining carbon footprint occurs when plastics are thrown away. Incineration releases all of the stored carbon in the plastic into the atmosphere, as well as air pollutants such as dioxins, furans, mercury and polychlorinated biphenyls, which are toxic and damaging to human health.

As plastics take centuries to degrade, disposal in landfill makes only a small contribution to emissions in theory. However, as much as 40% of landfill waste is burnt in open skies, dramatically speeding up the release of otherwise locked-up carbon.

Making plastic climate-friendly

If we are to combat climate breakdown, reductions in plastic emissions are clearly needed. Thankfully, the solution with the biggest potential is already in motion, albeit snow. In showing that transitioning to a zero carbon energy system has the potential to reduce emissions from plastic by 51%, the study provides yet another reason to rapidly phase out fossil fuels.

However, beyond urgently required global decarbonisation, we need to reduce our seemingly insatiable demand for carbon-based plastic. Increasing recycling rates is one simple way of doing this. The highest-quality plastics can be recycled many times, and nearly all plastic can be recycled to some extent – but only 18% was actually recycled worldwide in 2015. Although each recycle process requires a small amount of new plastics, we can greatly increase the life cycle of the material by efficiently reusing what we make.

A more fundamental solution is to switch to making plastics from biodegradable sources such as wood, corn starch, and sugar cane. The materials themselves are carbon neutral, although renewable power is essential to eliminate the climate impact of energy costs during production, transport and waste processing.

However, a massive ramping up in the production of bioplastics – which currently make up less than 1% of total plastic production – would require vast swathes of agricultural land. With the population set to arise dramatically, increasingly coveted arable space may not be able to satisfy demand.



The bottom line, therefore, is that we will need to reduce our demand for plastic. According to the study, simply reducing the annual growth in plastics demand from 4% to 2% could result in 60% lower emissions from the sector in 2050. While a life without plastics may seem unimaginable, its worth remembering that their prevalence is a relativity recent phenomenon. The first artificial plastic, Bakelite, was developed in 1907, but it wasn’t until the 1950s that the age of plastic began. If we show a genuine appetite to address plastic pollution, the world could change again just as quickly.
Governments, corporations, and individuals must make research into alternatives a priority, and support alternatives to needless plastic waste. Were most people to carry a reusable water bottle, for example, we could eliminate the need for the estimated 20,000 single-use bottles bought each second around the world.
Of course, any of these solutions alone will not be enough. As the recent study notes, only by combining reduction in demand, top-notch recycling, decarbonisation of energy, and large-scale adoption of bioplastics can we tackle plastic’s contribution to the climate crisis. But if we manage to do all of this, then we can cut plastics emissions to just 7% of current levels.
Plastics need not be completely demonised as environmental scourges. Affordable, durable, and versatile, they bring a raft of societal beefits, and will undoubtedly serve an important role where replacements are unable to be found. But decades of unbridled use and a throw-away culture are having grave consequences that go far beyond the visible pollution of our land and water. It is essential that we drastically reduce our use of avoidable plastics, and eliminate the carbon footprint of the ones we need to use. Our relationship with plastic may be toxic, but it doesn’t need to be forever.


Plastic: influencing pro‐environmental attitudes among youths

Plastics have much to offer as a modern convenience, but lack of responsible plastic waste management habits can lead to potentially harmful environmental effects. Past environmental initiatives revealed a lack of understanding about youth attitudes towards pro‐environmental issues. Plastic, an online public environmental promotional campaign, encouraged youth to recognize the importance of, adopt positive attitudes towards and subsequently adopt the practice of responsible plastic management. We propose the Temporal Incentives Model of Social Influence to guide social campaign design. A pre‐post quantitative research design showed that the pre‐contemplation, contemplation and preparation stages progressed significantly after the campaign. The findings suggest that stimuli incorporating specialized information and small action steps allow migration to successive stages. With the strong presence of internet culture among youth, the online medium was found effective in altering the attitudes of the campaign target audience, while exposure to the campaign messages proved useful in encouraging environmental learning among youth.

 

Plastic Pollution Is Choking the Planet

People who deny that humans are wreaking havoc on the planet’s life-support systems astound me. When confronted with the obvious damage we’re doing to the biosphere—from climate change to water and air pollution to swirling plastic patches in the oceans—some dismiss the reality or employ logical fallacies to discredit the messengers. More…

Plastic Bags and Climate Change

Plastic Bags and climate change are linked in a variety of ways. From air quality to ocean toxicity, plastic bags contribute to eco-system disruption.

Habitat destruction, fossil fuel emissions, and plastic pollution are some of the ways that plastic bags and climate change cannot be separated. More…

Cleaning Up Delhi’s Dirty Air Using Jet Engines

Delhi in India is one of the most polluted cities in the world. The widespread use of festival fireworks, the burning of rubbish by the city’s poor, plus farm waste from around the city, vehicular emissions and construction dust, all contribute to the city’s thick fogs.

A team of researchers from the US, India and Singapore will be attempting some time next year to clean up the air around a coal-fired plant in Delhi. More…

US and China Formally Join Paris Climate Pact

China and the US have formally ratified a historic climate change agreement drawn up in Paris to cut emissions and fight climate change. Speaking on the eve of the G20 summit in Hangzhou on Saturday, Mr Obama said: “History will judge today’s effort as pivotal.” The US and China are together responsible for 40% of the world’s carbon emissions. More…

20 Hosehold Plants with Air Purifying Properties

Do you know that having plants around your home can help remove airborne contaminants like VOCs (volatile organic compounds), as well as reduce the chances of headaches, common cold, high blood pressure and allergies.

Here’s a list of plants with proven air quality improvement properties. More…

Monitoring Air Pollution Crisis in Africa’s Megacities

By 2050 Africa’s fast-growing cities like Lagos and Kinshasa will have populations of over 30 million. The World Health Organisation estimates air quality to be responsible for more than 500,000 deaths a year in Africa from both indoor and outdoor air pollution. More…

Global Warming In the Artic and Its Effects

Increases in greenhouse gases have led to unprecedented regional warmth in the Arctic. A 2013 article published in Geophysical Research Letters has shown that temperatures in the region haven’t been as high as they currently are since at least 44,000 years ago and perhaps as long as 120,000 years ago. The period of 1995-2005 was the warmest decade in the Arctic since at least the 17th century, with temperatures 2 °C (3.6 °F) above the 1951-1990 average. More…